Inapproximability of Rank, Clique, Boolean, and Maximum Induced Matching-Widths under Small Set Expansion Hypothesis

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inapproximability of Maximum Edge Biclique, Maximum Balanced Biclique and Minimum k-Cut from the Small Set Expansion Hypothesis

The Small Set Expansion Hypothesis (SSEH) is a conjecture which roughly states that it is NPhard to distinguish between a graph with a small set of vertices whose expansion is almost zero and one in which all small sets of vertices have expansion almost one. In this work, we prove conditional inapproximability results for the following graph problems based on this hypothesis: Maximum Edge Bicli...

متن کامل

Inapproximability of Maximum Biclique Problems, Minimum k-Cut and Densest At-Least-k-Subgraph from the Small Set Expansion Hypothesis

The Small Set Expansion Hypothesis is a conjecture which roughly states that it is NP-hard to distinguish between a graph with a small subset of vertices whose (edge) expansion is almost zero and one in which all small subsets of vertices have expansion almost one. In this work, we prove conditional inapproximability results with essentially optimal ratios for the following graph problems based...

متن کامل

Fixed parameter inapproximability for Clique and Set-Cover

A minimization (resp., maximization) problem is called fixed parameter (r, t)approximable for two functionsr, t if there exists an algorithm that given an integer k and a problem instance I with optimum value opt, finds either a feasible solution of value at most r(k) · k (resp., at least k/r(k)) or a certificate that k < opt (resp., k > opt), in time t(k) · |I|O(1). A problem is called fixed p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algorithms

سال: 2018

ISSN: 1999-4893

DOI: 10.3390/a11110173